The function of filensin and phakinin in lens transparency
نویسندگان
چکیده
PURPOSE Beaded filaments are lens cell-specific intermediate filaments composed of two proteins: filensin and phakinin (CP49). Filensin and phakinin are believed to function in the maintenance of lens transparency. To elucidate the function of filensin and phakinin at the molecular level, we examined the degradation of these two proteins in normal and cataractous rat lenses. METHODS A hereditary cataract model, the Shumiya cataract rat (SCR), was used for these studies. Anti-filensin antibodies were raised against three different regions of the protein, the rod domain, the inner region of the tail domain, and the outer region of the tail domain. Anti-filensin and anti-phakinin antibodies were used to examine the conformation of degradation of filensin and phakinin by western blot analysis and fluorescent immunocytochemistry of cryosectioned lenses. RESULTS In the normal lens, filensin was processed from a 94 kDa protein to proteins of 50 kDa and 38 kDa. Similarly, phakinin was processed from a 49 kDa protein to one of 40 kDa. The concentrations of filensin and phakinin in the rat lens cortex fluctuated with age and decreased during cataractogenesis. The 50 kDa form of filensin decreased significantly before opacification. In the normal lens, phakinin, the filensin rod domain, and the filensin inner tail domain localized to membrane lining regions in the shallow cortex and to the central region of the cytoplasm in the deep cortex. The COOH-terminal domain of filensin localized to the membrane lining region in the deep cortex. In pre-cataractous lenses, phakinin and the filensin rod domain localized primarily to the membranes lining the shallow cortex region and were distributed throughout the cytoplasm of lens fiber cells in the deep cortex. CONCLUSIONS The 50 kDa form of filensin is important for the localization of beaded filaments in lens fiber cells and for lens transparency.
منابع مشابه
The 47-kD lens-specific protein phakinin is a tailless intermediate filament protein and an assembly partner of filensin
In previous studies we have characterized a lens-specific intermediate filament (IF) protein, termed filensin. Filensin does not self-assemble into regular IFs but is known to associate with another 47-kD lens-specific protein which has been suggested to represent its assembly partner. To address this possibility, we cloned and sequenced the cDNA coding for the bovine 47-kD protein which we hav...
متن کاملFilensin and phakinin form a novel type of beaded intermediate filaments and coassemble de novo in cultured cells
The fiber cells of the eye lens possess a unique cytoskeletal system known as the "beaded-chain filaments" (BFs). BFs consist of filensin and phakinin, two recently characterized intermediate filament (IF) proteins. To examine the organization and the assembly of these heteropolymeric IFs, we have performed a series of in vitro polymerization studies and transfection experiments. Filaments asse...
متن کاملContributions of the structural domains of filensin in polymer formation and filament distribution.
Filensin and phakinin constitute the subunits of a heteropolymeric, lens-specific intermediate filament (IF) system known as the beaded-chain filaments (BFs). Since the rod of filensin is four heptads shorter than the rods of all other IF proteins, we decided to examine the specific contribution of this protein in filament assembly. For these purposes, we constructed chimeric proteins in which ...
متن کاملaB-Crystallin Selectively Targets Intermediate Filament Proteins during Thermal Stress
RESULTS. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western immunoblot analyses showed selective interactions in lens cell homogenates between MBP-aB and endogenous aAand aB-crystallins, the lens-specific intermediate filament proteins phakinin (CP49) and filensin (CP115), and vimentin during a mild 20-minute heat shock at 45°C. No interactions were observed with t...
متن کاملSpatially Directed Proteomics of the Human Lens Outer Cortex Reveals an Intermediate Filament Switch Associated With the Remodeling Zone
PURPOSE To quantify protein changes in the morphologically distinct remodeling zone (RZ) and adjacent regions of the human lens outer cortex using spatially directed quantitative proteomics. METHODS Lightly fixed human lens sections were deparaffinized and membranes labeled with fluorescent wheat germ agglutinin (WGA-TRITC). Morphology directed laser capture microdissection (LCM) was used to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular Vision
دوره 14 شماره
صفحات -
تاریخ انتشار 2008